AAAAAAAAAAAAAAAAAA

Large-Scale Parallel Computing
Implementation of TRANSIMS Microsimulation
Model of the Chicago Metropolitan Area

Michael Hope

Computational Transportation Engineer

Energy Systems Division
Argonne National Laboratory
transims@anl.gov
http://www.tracc.anl.gov/

Introduction to TRANSIMS Microsimulation

The TRANSIMS microsimulator is an agent-based simulation code which
operates well on the meso or micro scale to assess congestion patterns.
Routing of all the agents takes place in a separate utility run just prior to the
microsimulator. This routing details which set of road links will make up the
agent’s path.

The agents are then simulated along the fixed paths generated by the router all
together in the microsimulator. Vehicles have full discretion on the best way to
move through a given link.

Agents follow a set of rules based on a cellular automata framework with
additional behaviors to model:

— Random slow down

— Voluntary lane changes

— Lane swapping

— Driver reaction mechanics

— Proper plan following distances

The Evolution of TRANSIMS Microsimulation

TRANSIMS was originally developed at a time when large scale microsimulation
required cluster computing capabilities.

Version 3 of TRANSIMS was designed to run exclusively across multiple
processors on a cluster computer.

Standard desktop processors are now fast enough to perform microsimulation
over reasonably large regions.

Version 4 was designed to optimize performance for a single core, discarding all
elements of the previously parallel framework.

Three factors dictated the need for TRANSIMS to become a parallel application
once again:

— Desktop processor architecture moved from having a fast single core to having
multiple slower cores.

— Small (12- to 24-core) clusters became widely available.

— TRANSIMS microsimulation is now being used on areas large enough that current
desktop performance is not sufficient in terms of both memory and processing time

The Chicago TRANSIMS model

The Chicago Metropolitan Area model

Chicago Metropolitan Area Regional Network

(developed by TRACC) is an ideal test
bed for the parallelization effort of
TRANSIMS for several reasons:

— The Chicago regional model memory
requirements are too large to run on a

desktop computer: ~27 million trips over
a 24 hour period

— Subarea microsimulation methods with
~3.5 million trips still take over 2 hours
and do not reveal high fidelity
congestion patterns in the regional
network

— TRACC has full access to a high
performance cluster

T
w8

I 5
NN I
NN

_{l

=g

00 M Ad

:

Fix

|||
iﬂl&:wj i
1

“HH Ay

H—

T s
7 iawi:
I
B I | T
y Chicago Subarea Simulation Area
Gimai
S
N S
. = LT This
” ety [
[T ST
H g L
D il ﬁ
\ 2

Parallelization Architecture Overview

» The parallelization of the TRANSIMS microsimulator was done with several
motivations in mind:
— Produce realistic mechanics across boundaries
— Minimize pre-processing and post-processing
— Minimize time needed to process and transfer boundary vehicles

— Provide a framework which facilitates dynamic re-routing across partitions and
allows dynamic load re-balancing during the simulation

Responsibilities of Each Node

= Master Node (1)
— Reading in trip paths for all partitions
— Passing trip path out to appropriate slaves
— Gathering congestion data from slave nodes
— Writing congestion statistics
— Global monitoring of activity-based travelers
= Slave Nodes (n-1)

— Processing second-by-second movements of all vehicles within the geographical area
assigned to it

— Exchanging boundary vehicles with neighboring partitions
— Writing snapshot output
— Performing the necessary boundary calculations

PartitionNet: Overview

Before simulation the network is first broken into geo-partitioned regions
which are then assigned to each processor.

METIS is a fast open source graph partitioning program written in C which takes
an adjacency list of nodes, weights, and desired number of partitions as input.
The output is a partitioned graph

The program PartitionNet was developed as a wrapper around the METIS
software to re-format, weight, and export the TRANSIMS road network to
METIS. After partitioning, the METIS output is read back in and re-formatted as
a TRANSIMS network. Partitions are denoted as an extra entry in the

TRANSIMS node table.

Partition A
Partition B
‘ Boundaries

PartitionNet: METIS Preparation Techniques

Determine Short Links Re-Write Link table as
an adjacency list

Link Anode | Bnode
1 1 2
2 2 3
@ 3 3 1
Compress them into one node, @
aggregating the connectivity of
the original nodes Node Adjacent
Nodes
1 2,3
2 1,3
3 1,2

PartitionNet: METIS Preparation Techniques cont’d

Calculate weights one of

three ways:
1) Sum half the capacities
of all links associated Weight | Node | Adjacent
with the node Nodes
2) Sum half the lengths :>
times lanes of all links 3 1 2,3
associated with the node 10 2 1,3
3) Sum the occupancy
values of all links 2 3 1,2

associated with the node

Architecture

Process first vehicles not in gold
boundary region:
1,4,5,6,7,and 8

Anyone who moves into the gold
boundary region is placed in the
boundary queue: 1

S 10

Architecture cont’d

Determine the trailing vehicles
within the blue region and pass
them back to partition A

The only information actually
passed is the vehicle’s position

S 11

Architecture cont’d

Process the vehicles in the
boundary queue (gold region)
which have not yet moved this
step: 2, 3

All vehicles which cross the
boundary copy and pass all
relevant vehicle information
(path, ID, position, etc...) to
partition B

S 12

Architecture cont’d

Remove all vehicles in the purple
region of partition A and place
any new vehicles in partition B in
the priority queue for the next
iteration.

This boundary traversal method
minimizes transferred data and
has the distinct advantage that
every vehicle is still only
processed once per iteration.

S 13

v

Additional Features

= Full functionality for Transit

Massively multi-cell vehicles (trains) move uniquely through boundaries by “guessing”
where their cells were in the previous partitions — saving valuable transfer time

Small multi-cell (buses) can exist in both partitions at one time
Passengers transfer successfully between partitions

= Full functionality for Activity-Based Trips — Activity Monitoring System

Assures that travelers won’t begin legs of trips in other partitions if they encountered a
problem in another partition

Travelers will not start a leg of their trip in one partition if they are still busy in another
partition

= Various memory-based optimizations

Redesign of the vehicle (primary storage) array - saving every byte possible
Clearing unneeded parts of the vehicle (primary storage) array dynamically as necessary

Ensuring things done on a region-wide basis are only done in the portion of the network
important to that partition

Detecting and fixing memory leaks using Valgrind

U.S. Department of Transportation TRACC Transportation Research and Analysis Computing Center

14

Regional Networks Subdivided into Partitions

i ‘
——t— .
R : .,:‘\\ St
,.*‘ AR Lol v%w“
T el »‘2';@‘1‘:;’55': 7*& jd
1 %; | 454 e lf“:‘?‘bs oy ,

74

Atlanta Metropolitan Area

Chicago Metropolitan Area

U.S. Department of Transportation TRACC Transportation Research and Analysis Computing Center

15

Regional Performance Results

Processors Parallel Optimal
1 18.81667 18.81667
7 2.816667 2.688095
15 1.9 1.254444
31 1.183333 0.606989
63 0.65 0.298677

CPUs Parallel Optimal
(Slave) (Hours) (Hours)
1 48 48
7 9.633333 6.857143

15 6 3.2

31 2.85 1.548387
63 1.433333 0.761905
127 0.966667 0.377953

Parallel Performance CMA Region Parallel Performance Atlanta Region
55 | 20
ZCS) . — Achieved 12 R —a—Achieved |
g(S) ‘\ —@—Optimal 14 \\ —#—Optimal
2 30 -\ g 22\
2 2 2 \
20 ‘\ 8 \
15 6 \
10 i 4
5 2 ﬂ
0 o 0 ————g
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 0 10 20 30 40 50 60 70
Processors Processors

U.S. Department of Transportation

é 16

TRACC Transportation Research and Analysis Computing Center

Result Quality Comparison

Reasons For these discrepancies Parallel Result Quality CMA
= Network Queue re-ordering 100
. 90
across boundaries (cars become g 80
better ordered on links and s 10
actually perform better) 5 =0 —+—Hours, Delay
c
. Q
= Various random number rolls e 30 —&—"Hours, Travel
. a 20 = Avg Speed
(driver reaction time, permission 10 - -
. 0 *ﬁ
probability, etc...) o 10 20 o 5o -
= Differing boundary link mechanics, Processors
not being able to look ahead
produces different decisions
1 15 31 63
Vehicle Hours of Delay 8928193 9083615 9124482 9165575
Percent Difference 0 1.725785 2.174632 2.623908
Vehicle Hours of Travel 11276526 11571852 11674123 11791863
Percent Difference 0 2.585093 3.464798 4.467899
Average Speed 12.69 13.11 13.33 13.6
Percent Difference 0 3.255814 4.919293 6.922784
U.S. Department of Transportation TRACC Transportation Research and Analysis Computing Center

17

Future Development

The results indicate a stronger need for a partitioning weighting which will
provide better initial load balancing.

In addition there will be testing on a capability to dynamically balance the load
by re-partitioning the simulation at certain points during the day.

Parallel performance could still be improved by making several minor
optimizations throughout the simulation code.

A long term goal is to maintain parallelization through geo-partitioning across
multiple nodes and to implement multi-threading for a single processor.

18

